Digital Twins for Yield

Thursday, May 09
11:35am to 12:00pm

Digital twins are virtual representations of physical systems. As process complexity increases, they are becoming key to efficient operations and high product yields.

Moore's law continues not only to drive exponential increases in the performance and storage capacities of integrated circuits, but also in the volumes of data produced by IC manufacturing processes. Process equipment is increasingly better instrumented with sensors, and the number and complexity of the processing steps are growing rapidly. The process complexity necessitates, and the available data volumes enable, a shift to ever more data-driven yield improvement, leveraging the latest big data, machine learning and AI technologies. There is now a demand for ‘wide-and-big data’ analytic solutions that detect associations between product quality metrics and thousands to millions of process variables (process measurements and raw equipment sensor traces). These cutting edge solutions can support root-cause, clustering, and other analyses at the die level. Further, the results must be available close to "real-time", to enable useful process interventions — for example to identify subtle equipment changes, process shift or drift, or to predict and remedy substandard yield for a lot in the line.

Share page with AddThis